Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metal-binding properties of phytochelatin-related peptides.

Identifieur interne : 002849 ( Main/Exploration ); précédent : 002848; suivant : 002850

Metal-binding properties of phytochelatin-related peptides.

Auteurs : H. Satofuka [Japon] ; T. Fukui ; M. Takagi ; H. Atomi ; T. Imanaka

Source :

RBID : pubmed:11566332

Descripteurs français

English descriptors

Abstract

Phytochelatins (PCs, (gamma Glu-Cys)(n)-Gly, n=2-11) are produced by higher plants, algae and some fungi in order to detoxify Cd(2+) by sequestration to form Cd-PCs complexes. In order to investigate what chemical structures of PCs are responsible for their metal-binding ability, various cysteine-rich peptides ((X-Cys)(7)-Gly, X=Glu, Asp, Lys, Gly, Ser and Gln) were chemically synthesized. Water-solubility, metal-binding property, and detoxification effect toward Cd(2+) were analyzed and compared with those of (gamma EC)(7)G. (SC)(7)G and (QC)(7)G were insoluble at pH below 10, and (GC)(7)G was not soluble at any pH between 1 and 12, indicating that charged side chains were at least required for the molecules to be solubilized in aqueous solution. By spectroscopic analyses using DTNB method and UV method, we found that (EC)(7)G and (DC)(7)G had almost equivalent abilities of Cd(2+)-binding as PC ((gamma EC)(7)G), indicating that the distance between each thiol group was not a major factor for the binding to Cd(2+). (beta DC)(7)G and (KC)(7)G interacted to Cd(2+) with fourth coordination as in the case of other soluble PC-related peptides. However, compared to (gamma EC)(7)G, (beta DC)(7)G displayed a slightly weaker binding to Cd(2+), and (KC)(7)G showed a drastic decrease in binding ability. The affinities of PC-related peptides toward Cd(2+) were evaluated as below; (gamma EC)(7)G=(EC)(7)G=(DC)(7)G>(beta DC)(7)G>(KC)(7)G=weak binding. The results of Cd(2+)-detoxification assays were consistent with the affinity between Cd(2+) and the peptides. We concluded that the structure consisting of thiol and carboxyl groups were essential for the formation of a tight Cd-peptides complex such as Cd-PCs.

DOI: 10.1016/s0162-0134(01)00223-9
PubMed: 11566332


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metal-binding properties of phytochelatin-related peptides.</title>
<author>
<name sortKey="Satofuka, H" sort="Satofuka, H" uniqKey="Satofuka H" first="H" last="Satofuka">H. Satofuka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fukui, T" sort="Fukui, T" uniqKey="Fukui T" first="T" last="Fukui">T. Fukui</name>
</author>
<author>
<name sortKey="Takagi, M" sort="Takagi, M" uniqKey="Takagi M" first="M" last="Takagi">M. Takagi</name>
</author>
<author>
<name sortKey="Atomi, H" sort="Atomi, H" uniqKey="Atomi H" first="H" last="Atomi">H. Atomi</name>
</author>
<author>
<name sortKey="Imanaka, T" sort="Imanaka, T" uniqKey="Imanaka T" first="T" last="Imanaka">T. Imanaka</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11566332</idno>
<idno type="pmid">11566332</idno>
<idno type="doi">10.1016/s0162-0134(01)00223-9</idno>
<idno type="wicri:Area/Main/Corpus">002839</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002839</idno>
<idno type="wicri:Area/Main/Curation">002839</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002839</idno>
<idno type="wicri:Area/Main/Exploration">002839</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metal-binding properties of phytochelatin-related peptides.</title>
<author>
<name sortKey="Satofuka, H" sort="Satofuka, H" uniqKey="Satofuka H" first="H" last="Satofuka">H. Satofuka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fukui, T" sort="Fukui, T" uniqKey="Fukui T" first="T" last="Fukui">T. Fukui</name>
</author>
<author>
<name sortKey="Takagi, M" sort="Takagi, M" uniqKey="Takagi M" first="M" last="Takagi">M. Takagi</name>
</author>
<author>
<name sortKey="Atomi, H" sort="Atomi, H" uniqKey="Atomi H" first="H" last="Atomi">H. Atomi</name>
</author>
<author>
<name sortKey="Imanaka, T" sort="Imanaka, T" uniqKey="Imanaka T" first="T" last="Imanaka">T. Imanaka</name>
</author>
</analytic>
<series>
<title level="j">Journal of inorganic biochemistry</title>
<idno type="ISSN">0162-0134</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cadmium (metabolism)</term>
<term>Chelating Agents (chemistry)</term>
<term>Chelating Agents (metabolism)</term>
<term>Chelating Agents (pharmacology)</term>
<term>Environmental Pollutants (metabolism)</term>
<term>Glutathione (MeSH)</term>
<term>In Vitro Techniques (MeSH)</term>
<term>Inactivation, Metabolic (MeSH)</term>
<term>Metalloproteins (chemistry)</term>
<term>Metalloproteins (metabolism)</term>
<term>Metalloproteins (pharmacology)</term>
<term>Metals (metabolism)</term>
<term>Peptides (chemical synthesis)</term>
<term>Peptides (chemistry)</term>
<term>Peptides (metabolism)</term>
<term>Peptides (pharmacology)</term>
<term>Phytochelatins (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Proteins (pharmacology)</term>
<term>Protein Binding (MeSH)</term>
<term>Solubility (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cadmium (métabolisme)</term>
<term>Chélateurs (composition chimique)</term>
<term>Chélateurs (métabolisme)</term>
<term>Chélateurs (pharmacologie)</term>
<term>Glutathion (MeSH)</term>
<term>Inactivation métabolique (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Métalloprotéines (composition chimique)</term>
<term>Métalloprotéines (métabolisme)</term>
<term>Métalloprotéines (pharmacologie)</term>
<term>Métaux (métabolisme)</term>
<term>Peptides (composition chimique)</term>
<term>Peptides (métabolisme)</term>
<term>Peptides (pharmacologie)</term>
<term>Peptides (synthèse chimique)</term>
<term>Phytochélatines (MeSH)</term>
<term>Polluants environnementaux (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéines végétales (pharmacologie)</term>
<term>Solubilité (MeSH)</term>
<term>Techniques in vitro (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chelating Agents</term>
<term>Metalloproteins</term>
<term>Peptides</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
<term>Chelating Agents</term>
<term>Environmental Pollutants</term>
<term>Metalloproteins</term>
<term>Metals</term>
<term>Peptides</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chelating Agents</term>
<term>Metalloproteins</term>
<term>Peptides</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutathione</term>
<term>Phytochelatins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Chélateurs</term>
<term>Métalloprotéines</term>
<term>Peptides</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cadmium</term>
<term>Chélateurs</term>
<term>Métalloprotéines</term>
<term>Métaux</term>
<term>Peptides</term>
<term>Polluants environnementaux</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chélateurs</term>
<term>Métalloprotéines</term>
<term>Peptides</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>In Vitro Techniques</term>
<term>Inactivation, Metabolic</term>
<term>Protein Binding</term>
<term>Solubility</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Glutathion</term>
<term>Inactivation métabolique</term>
<term>Liaison aux protéines</term>
<term>Phytochélatines</term>
<term>Solubilité</term>
<term>Techniques in vitro</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phytochelatins (PCs, (gamma Glu-Cys)(n)-Gly, n=2-11) are produced by higher plants, algae and some fungi in order to detoxify Cd(2+) by sequestration to form Cd-PCs complexes. In order to investigate what chemical structures of PCs are responsible for their metal-binding ability, various cysteine-rich peptides ((X-Cys)(7)-Gly, X=Glu, Asp, Lys, Gly, Ser and Gln) were chemically synthesized. Water-solubility, metal-binding property, and detoxification effect toward Cd(2+) were analyzed and compared with those of (gamma EC)(7)G. (SC)(7)G and (QC)(7)G were insoluble at pH below 10, and (GC)(7)G was not soluble at any pH between 1 and 12, indicating that charged side chains were at least required for the molecules to be solubilized in aqueous solution. By spectroscopic analyses using DTNB method and UV method, we found that (EC)(7)G and (DC)(7)G had almost equivalent abilities of Cd(2+)-binding as PC ((gamma EC)(7)G), indicating that the distance between each thiol group was not a major factor for the binding to Cd(2+). (beta DC)(7)G and (KC)(7)G interacted to Cd(2+) with fourth coordination as in the case of other soluble PC-related peptides. However, compared to (gamma EC)(7)G, (beta DC)(7)G displayed a slightly weaker binding to Cd(2+), and (KC)(7)G showed a drastic decrease in binding ability. The affinities of PC-related peptides toward Cd(2+) were evaluated as below; (gamma EC)(7)G=(EC)(7)G=(DC)(7)G>(beta DC)(7)G>(KC)(7)G=weak binding. The results of Cd(2+)-detoxification assays were consistent with the affinity between Cd(2+) and the peptides. We concluded that the structure consisting of thiol and carboxyl groups were essential for the formation of a tight Cd-peptides complex such as Cd-PCs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11566332</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0162-0134</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>86</Volume>
<Issue>2-3</Issue>
<PubDate>
<Year>2001</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of inorganic biochemistry</Title>
<ISOAbbreviation>J Inorg Biochem</ISOAbbreviation>
</Journal>
<ArticleTitle>Metal-binding properties of phytochelatin-related peptides.</ArticleTitle>
<Pagination>
<MedlinePgn>595-602</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Phytochelatins (PCs, (gamma Glu-Cys)(n)-Gly, n=2-11) are produced by higher plants, algae and some fungi in order to detoxify Cd(2+) by sequestration to form Cd-PCs complexes. In order to investigate what chemical structures of PCs are responsible for their metal-binding ability, various cysteine-rich peptides ((X-Cys)(7)-Gly, X=Glu, Asp, Lys, Gly, Ser and Gln) were chemically synthesized. Water-solubility, metal-binding property, and detoxification effect toward Cd(2+) were analyzed and compared with those of (gamma EC)(7)G. (SC)(7)G and (QC)(7)G were insoluble at pH below 10, and (GC)(7)G was not soluble at any pH between 1 and 12, indicating that charged side chains were at least required for the molecules to be solubilized in aqueous solution. By spectroscopic analyses using DTNB method and UV method, we found that (EC)(7)G and (DC)(7)G had almost equivalent abilities of Cd(2+)-binding as PC ((gamma EC)(7)G), indicating that the distance between each thiol group was not a major factor for the binding to Cd(2+). (beta DC)(7)G and (KC)(7)G interacted to Cd(2+) with fourth coordination as in the case of other soluble PC-related peptides. However, compared to (gamma EC)(7)G, (beta DC)(7)G displayed a slightly weaker binding to Cd(2+), and (KC)(7)G showed a drastic decrease in binding ability. The affinities of PC-related peptides toward Cd(2+) were evaluated as below; (gamma EC)(7)G=(EC)(7)G=(DC)(7)G>(beta DC)(7)G>(KC)(7)G=weak binding. The results of Cd(2+)-detoxification assays were consistent with the affinity between Cd(2+) and the peptides. We concluded that the structure consisting of thiol and carboxyl groups were essential for the formation of a tight Cd-peptides complex such as Cd-PCs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Satofuka</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fukui</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Takagi</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Atomi</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Imanaka</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Inorg Biochem</MedlineTA>
<NlmUniqueID>7905788</NlmUniqueID>
<ISSNLinking>0162-0134</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002614">Chelating Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004785">Environmental Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008667">Metalloproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008670">Metals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>98726-08-0</RegistryNumber>
<NameOfSubstance UI="D054811">Phytochelatins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002614" MajorTopicYN="N">Chelating Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004785" MajorTopicYN="N">Environmental Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008658" MajorTopicYN="N">Inactivation, Metabolic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008667" MajorTopicYN="N">Metalloproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008670" MajorTopicYN="N">Metals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054811" MajorTopicYN="N">Phytochelatins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11566332</ArticleId>
<ArticleId IdType="pii">S0162-0134(01)00223-9</ArticleId>
<ArticleId IdType="doi">10.1016/s0162-0134(01)00223-9</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Atomi, H" sort="Atomi, H" uniqKey="Atomi H" first="H" last="Atomi">H. Atomi</name>
<name sortKey="Fukui, T" sort="Fukui, T" uniqKey="Fukui T" first="T" last="Fukui">T. Fukui</name>
<name sortKey="Imanaka, T" sort="Imanaka, T" uniqKey="Imanaka T" first="T" last="Imanaka">T. Imanaka</name>
<name sortKey="Takagi, M" sort="Takagi, M" uniqKey="Takagi M" first="M" last="Takagi">M. Takagi</name>
</noCountry>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Satofuka, H" sort="Satofuka, H" uniqKey="Satofuka H" first="H" last="Satofuka">H. Satofuka</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002849 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002849 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11566332
   |texte=   Metal-binding properties of phytochelatin-related peptides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11566332" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020